

SciKG Part 3: Semantic Data Dictionaries (SDD)

Henrique Santos, Paulo Pinheiro, Jamie P. McCusker, Sabbir M. Rashid, Deborah L. McGuinness May 28th 2023

The 20th Extended Semantic Web Conference (ESWC-23)

The 20th Extended Semantic Web Conference (ESWC-23) May 28th, 2023

SciKG Part 3: Semantic Data Dictionaries (SDDs)

Henrique Santos Paulo Pinheiro Jamie P. McCusker Sabbir M. Rashid Deborah L. McGuinness

TetherlessWorld

UFMG G Columbia University MAILMAN SCHOOL OF PUBLIC HEALTH

INTRODUCTION

01

02

03

We introduce this work, motivate its importance, and present our claims

RELATED WORK

We review literature related to traditional data dictionaries, data integration, mapping languages, and semantic ETL

SEMANTIC DATA DICTIONARY

We present the various components included in the Semantic Data Dictionary specification

TABLE OF CONTENTS

04

MODELING APPROACHES

We discuss some modeling strategies and provide some examples to help illustrate this work

CHALLENGES

We discuss some challenges faced by domain scientists when creating their of Semantic Data Dictionaries

06 CONCLUSION Thanks for listening!

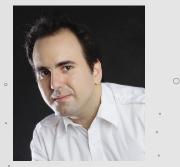
O1 INTRODUCTION

We introduce this work, motivate its importance, and present our claims

Data Int. journal paper authors - <u>https://bit.ly/3kG6iDi</u>

SABBIR RASHID


JAMIE MCCUSKER



PAULO PINHEIRO

MARCELLO BAX

HENRIQUE SANTOS

JEANETTE STINGONE

AMAR DAS

DEBORAH MCGUINNESS

A data dictionary is a "centralized repository of information about data such as meaning, relationships to other data, origin, usage, and format" [IBM, 1993]

DATA DICTIONARIES

- Ambiguity
- Standard adherence
- Human consumption

LIMITATIONS

- Semantic technology usage
- Implicit concept annotation
 - Provenance incorporation

SEMANTIC

0 0

MOTIVATION

- Annotate data from various domains
- Harmonize data from multiple sources
 - Understand the data

CLAIMS

ADDRESSES LIMITATIONS

Addresses limitations of traditional data dictionaries

Semantic Data Dictionary

An approach for annotating and transforming data

ABSTRACTION

Presents a level of abstraction over mapping language-based approaches

F.A.I.R.

Resulting model is Findable, Accessible, Interoperable, and Reusable

· · OZ RELATED WORK

We review literature related to traditional data dictionaries, data integration, mapping languages, and semantic ETL

TRADITIONAL DATA DICTIONARIES

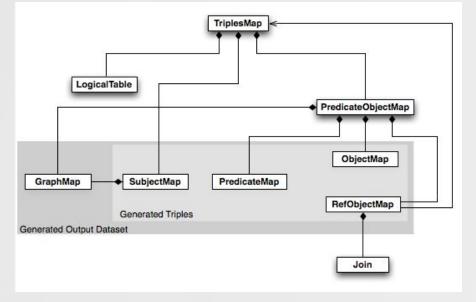
- Data dictionaries mentioned in patents [Haskell et al., 2009, Lau et al., 2002, Apacible et al., 2013]
- Stony Brook Data Governance Council (<u>https://bit.ly/3oD4g90</u>)
- The Open Science Framework (<u>https://bit.ly/35EPupT</u>)
- Biosystematic Database of World Diptera [Thompson, 1999]
- Project Open Data Metadata Schema (<u>https://bit.ly/3oCYTqr</u>)

LIMATIONS

- Minimal incorporation of semantics
- Object and relation elicitation not permitted
- Domain-specific
- Not machine-readable
- Lack of a formal creation standard

Q Filter	Sheet_1				
🛢 data/	Show rows with cells including:				
– 🎲 OSF Storage (United States)	Variable	Variable name	Mesaurement unit Allowed values		Description
	Participant ID number	ID	Numeric	001-999	ID number assigned to participant in sequential order
0.1 datadictionary.csv	Group number	GROUP	Numeric	1-30	Group assigned to participant based on ID number
🧕 0.2 raw.pdf	Age in years	AGE	Numeric	18.0-65.0	Age of participant in years
0.3 clean.csv	Date of birth	DOB	mm/dd/yyyy	1-12/1-31/1951-1998	Participant's date of birth
	Gender	SEX	Numeric	1 = male 2 = female	Participant's gender
	Date of survey	SURVEY	mm/dd/yyyy	01/01/2015 - 01/01/2016	When the participant completed the survey
	Self-reported consumer spending	SPEND	Numeric	0-100,000,000	Self-reported average yearly expenditure
Tage	Market sentiment	SENTIMENT	Numeric	1 = negative 2 = neutral 3 = positive	Sentiment towards US domestic economy
Tags	Actual GDP growth	GDP	Numeric	-5.0-5.0	Average US yearly GDP growth

DATA INTEGRATION

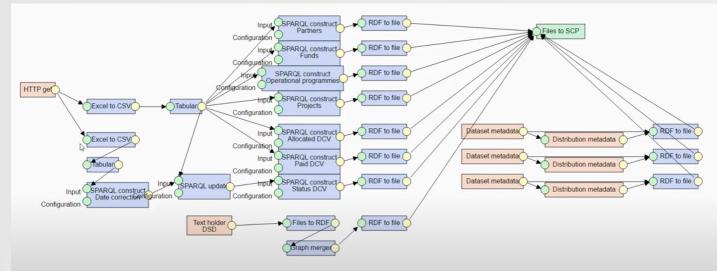

- Techniques that utilize data from multiple sources to construct a unified view of the combined data [Lenzerini, 2002]
- The Semantic Web Integration Tool (SWIT) [del Carmen Legaz-Garcia et al., 2016]
- RDF-Gen [Santipantakis et al., 2018]
- DataOps [Pinkel et al., 2015]
- OpenRefine [Ham, 2013]

LIMATIONS

- Not all tools are open source
- Some require knowledge of mapping languages
- Difficulties with subset selection, cell-based operations, dataset merging
- Not all tools allow object elicitation
- Some difficulties associated with adoption

MAPPING LANGUAGES

- Typically used to convert a relational database (RDB), tabular file, or hierarchical structure to an RDF format
- RDB to RDF Mapping Language (R2RML) [Arenas et al., 2012]
- RDF Mapping Language (RML) [Dimou et al., 2014]
- xR2RML [Michel et al., 2015]
- KR2RML [Slepicka et al., 2015]
- Karma [Knoblock and Szekely, 2015]
- Sparqlification Mapping Language (SML) [Stadler et al., 2015]
- RDB2OWL [Cerans and Bumans, 2011]



https://www.w3.org/TR/r2rml/

SEMANTIC EXTRACT, TRANSFORM, AND LOAD (ETL)

- (ETL) operations refer to processes that read data from a source database, convert the data into another format, and write the data into a target database
- LinkedPipes ETL (LP-ETL) [Klimek et al., 2016]
- Semantic Extract, Transform, and Load-er (SETLr) [McCusker et al., 2018]
- Eureka! Clinical Analytics [Post et al., 2013]
- Linked Data Integration Framework (LDIF) [Schultz et al., 2011]

SEMANTIC DATA DICTIONARY

We present the various components included in the Semantic Data Dictionary specification

 $\mathbf{03}$

SEMANTIC DATA DICTIONARY SPECIFICATION

INFOSHEET

Contains links to the other specifications

MAPPING

Used to annotate the columns of a dataset

0

CODEBOOK

Used to annotate coded values

METADATA SUPPLEMENT

Includes metadata 'about the Semantic. Data Dictionary or the associated dataset

CODE MAPPING

..... []

Used to encode shortcut notations (See https://bit.ly/2HLydmK)

TIMELINE

Used for complex temporal mappings

PROPERTIES

Used to customize the properties used during the mapping process

METADATA

SUPPLEMENT

INFOSHEET

SPECIFICATION

Infosheet Row	Description
Code Mapping	Reference to Code Mapping table location
Codebook	Reference to Codebook table location
DICTIONARY MAPPING	Reference to Dictionary Mapping table location
Properties	Reference to Properties table location
TIMELINE	Reference to Timeline table location

Infosheet Row	Related Property	Description
Contributors	dct:contributor	Contributors to the SDD
CREATORS	dct:creator	Creators of the SDD
DATE CREATED	dct:created	Date the SDD was created
Description	dct:description	Description of the KG fragment
Imports	owl:imports	Ontologies that the SDD references
Keywords	schema:keywords	Keywords to be associated with the KG fragment
LICENSE	dct:license	License URL
Previous Version	pav:previousVersion	Previous version URL
Publisher	dct:publisher	Publisher of the SDD
TITLE	dct:title	Title of KG fragment
VERSION	owl:versionInfo	Current version URL
Version Of	dct:isVersionOf	Resource URL for primary version

- Data on the Web Best Practices
 - <u>https://www.w3.org/TR/dwbp/</u>
- Semantic Web Health Care and Life Sciences
 - <u>https://www.w3.org/TR/hcls-dataset/</u>

DICTIONARY MAPPING

SPECIFIC	ATION		attributeOf Time	Cell Value s at
DM Column	Related Property	Description	Attribute of	has value Format
Attribute attributeOf Column	rdf:type sio:isAttributeOf	Class of attribute entry Entity having the attribute	Entity Colum	nn <u>has unit</u> Unit
ENTITY	rdf:type	Entry column header in dataset Class of entity entry	was derived from	has role inRelationTo
Format inRelationTo Label Relation	sio:inRelationTo rdfs:label	Specifies the structure of the cell value Entity that the role is linked to Label for the entry Custom property used in INRELATIONTO	wasDerivedFrom was generated by	Role Object in relation to
Role Time	sio:hasRole sio:existsAt	Type of the role of the entry Time point of measurement	wasGeneratedBy	Role
Unit wasDerivedFrom wasGeneratedBy	sio:hasUnit prov:wasDerivedFrom prov:wasGeneratedBy	Unit of measure for entry Entity from which the entry was derived Activity from which the entry was produced		
			•	

DICTIONARY MAPPING FORMALISM

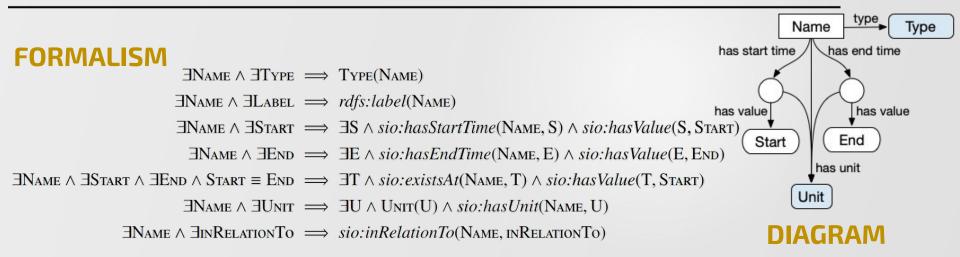
 $\exists Column \land \exists Attribute \implies Attribute(Column)$ $\exists Column \land \exists Entity \implies Entity(Column)$ \exists COLUMN $\land \exists$ LABEL $\implies rdfs:label(COLUMN, LABEL)$ \exists Column $\land \exists$ Comment \implies *rdfs:comment*(Column, Comment) \exists Column $\land \exists$ Definition \implies skos:definition(Column, Definition) $\exists Column \land \exists attributeOf \implies sio:attributeOf(Column, attributeOf)$ $\exists Column \land \exists Unit \implies \exists U \land Unit(U) \land sio:hasUnit(Column, U)$ $\exists COLUMN \land \exists FORMAT \land \exists Value \implies sio:hasValue(COLUMN, Value^FORMAT)$ $\exists COLUMN \land \exists TIME \implies sio:existsAt(COLUMN, TIME)$ $\exists \text{Column} \land \exists \text{Role} \implies \exists \text{R} \land sio:hasRole(\text{Column}, \text{R}) \land \text{Role}(\text{R})$ \exists Column $\land \exists$ Role $\land \exists$ INRelationTo $\implies \exists$ R \land sio:hasRole(Column, R) \land Role(R) \land *sio:inRelationTo*(R, INRELATIONTO) \exists COLUMN $\land \exists$ INRELATIONTO \implies sio:inRelationTo(COLUMN, INRELATIONTO) \exists Column $\land \exists$ Relation $\land \exists$ inRelationTo \implies Relation(Column, inRelationTo)) \exists Column $\land \exists$ Role $\land \exists$ Relation $\land \exists$ INRelationTo $\implies \exists$ R \land sio:hasRole(Column, R) \land Role(R) \wedge Relation(R, inRelationTo) \exists Column $\land \exists$ wasDerivedFrom $\implies prov:wasDerivedFrom(Column, wasDerivedFrom)$ \exists Column \land \exists wasGeneratedBy \implies prov:wasGeneratedBy(Column, wasGeneratedBy) $\exists Column \land \exists Value \implies sio:hasValue(Column, Value)$

CODEBOOK

SPECIFICATION

Codebook Column	Related Property	Description	Class
CLASS	rdf:type	Class the Code refers to	type
CODE	sio:hasValue	Value of the dataset entry	Column
Column		Entry column header in dataset	same as
LABEL	rdfs:label	Label for the codebook entry	Resource
RESOURCE	rdf:type	Web Resource URI the Code refers to	

FORMALISM



DIAGRAM

TIMELINE

SPECIFICATION

Timeline Column Related Property	Description
END <i>sio:hasEndTime</i>	The starting time point associated with the Timeline entry
INRELATIONT sio:inRelationTo	Entity that the Timeline entry is associated with
NAME /	Implicit entry reference for the Timeline entry
START sio:hasStartTime	The starting time point associated with the Timeline entry
TYPE rdf:type	Class the Timeline entry refers to
UNIT sio:hasUnit	Unit of measure for Timeline entry

PROPERTIES SPECIFICATION

Row	Property
ATTRIBUTE	rdf:type
ATTRIBUTEOF	sio:isAttributeOf
Comment	rdfs:comment
DEFINITION	skos:definition
End	sio:hasEndTime
ENTITY	rdf:type
INRELATIONTO	sio:inRelationTo
LABEL	rdfs:label
Role	sio:hasRole
Start	sio:hasStartTime
TIME	sio:existsAt
Type	rdf:type
Unit	sio:hasUnit
VALUE	sio:hasValue
wasDerivedFrom	prov:wasDerivedFrom
WASGENERATEDBY	prov:wasGeneratedBy

04 MODELLING APPROACHES

We discuss some modeling strategies and provide some examples to help illustrate this work

ONTOLOGY ENGINEERING

CLASS SELECTION

- Collect relevant ontologies
 - <u>http://www.ontobee.org/</u>
 - <u>https://bioportal.bioontology.org/</u>

SUPPORTING ONTOLOGY

- What if concepts used to annotate dataset does not exist in an ontology?
 - Create concept map
 - Engineer a supporting ontology
 - Protege
 - <u>https://protege.stanford.edu/</u>
 - Manual vs. automated approaches

KNOWLEDGE GRAPH GENERATION

- https://github.com/tetherless-world/SemanticDataDictionary
 - \circ sdd2rdf
 - o sdd2setl
- <u>https://github.com/tetherless-world/whyis</u>
- Will cover this in the tutorial!
- Loading of KG into a triplestore
- Querying the resulting Graph

INFOSHEET EXAMPLE

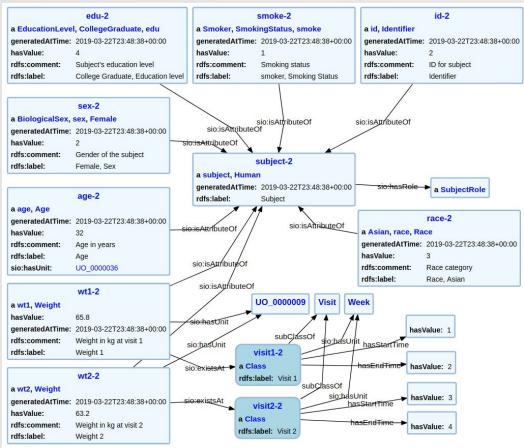
Attribute	Value
CREATORS	Sabbir M. Rashid
CODE MAPPING	NHANES/config/code_mappings.csv
Codebook	NHANES/input/CB/DEMO_H_Doc-CB.csv
Contributors	"James P. McCusker, Paulo Pinheiro, Marcello P. Bax, Henrique O. Santos,
	Alexander New, Shruthi Chari, Mathew Johnson, John S. Erickson,
	Kristin P. Bennett, Jeanette A. Stingone, Deborah L. McGuinness"
DATE CREATED	2018-10-14
DESCRIPTION	KG fragment from manually annotated NHANES Demographics SDD.
DICTIONARY MAPPING	NHANES/input/DM/DEMO_H_Doc-DM.csv
Imports	"http://semanticscience.org/ontology/sio-subset-labels.owl,
	http://hadatac.org/ont/chear/,http://purl.obolibrary.org/obo/ncit.owl"
Keywords	"demographics, gender, age, race, citizenship, marital status, household"
LICENSE	https://opensource.org/licenses/MIT
PREVIOUS VERSION	http://tw.rpi.edu/heals/kb/nhanes/1.1
PROPERTIES	NHANES/config/Properties.csv
Publisher	Tetherless World Constellation
TIMELINE	NHANES/input/TL/DEMO_H_Doc-TL.csv
Title	The National Health and Nutrition Examination (NHANES) SDD KG
VERSION	http://tw.rpi.edu/heals/kb/nhanes/1.2 •
VERSION OF	http://tw.rpi.edu/heals/kb/nhanes/

DICTIONARY MAPPING EXAMPLE

Column	Label	Attribute	ATTRIBUTEOF	Unit	TIME	ENTITY	RELATION	INRELATIONTO
SEQN	Respondent sequence num-	sio:Identifier	??participant					
	ber							
RIAGENDR	Gender	sio:BiologicalSex	??participant					
RIDAGEYR	Age in years at screening	sio:Age	??participant	yr	??screeni	ing		
RIDAGEMN	Age in months at screening	sio:Age	??participant	mth	??screeni	ing		
RIDRETH1	Race/Hispanic origin	sio:Race	??participant					
RIDEXAGM	Age in months at exam	sio:Age	??participant	mth	??exam			
DMDBORN4	Country of birth				??birth	sio:Country	sio:isLocationOf	??participant
DMDCITZN	Citizenship status	sio:StatusDescriptor	??participant					
DMDYRSUS	Length of time in US	sio:TimeInterval	??participant					
DMDEDUC3	Education level - Chil-	chear:EducationLevel	??participant					
	dren/Youth							
DMDEDUC2	Education level - Adults 20+	chear:EducationLevel	??participant					
DMDMARTL	Marital status	chear:MaritalStatus	??participant					
RIDEXPRG	Pregnancy status at exam	sio:StatusDescriptor	??pregnancy		??exam			??participant
SIALANG	Language of SP Interview	chear:Language	??instrument		??intervi	iew		??participant
DMDHRGND	HH ref person's gender	sio:BiologicalSex	??HHRef					
DMDHRAGE	HH ref person's age in years	sio:Age	??HHRef	yr				
DMDHRBR4	HH ref person's country of birth				??birth	sio:Country	sio:isLocationOf	??HHRef
DMDHREDU	HH ref person's education	chear:EducationLevel	??HHRef					
DUDUDUUD	level	1 1/1 1/10						
DMDHRMAR	HH ref person's marital sta- tus	chear:MaritalStatus	??HHRef					
WTINT2YR	Full sample 2 year interview	chear:Weight	??participant		??intervi	Lew		
	wt							
WTMEC2YR	Full sample 2 year MEC exam wt	chear:Weight	??participant		??exam			
INDHHIN2	Annual household income	chear:Income	??household					

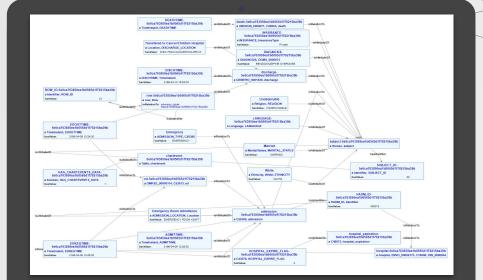
EXPLICIT ENTRIES

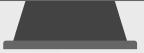
Column	Label	Entity	Role	INRELATIONTO
??participant	Participant	ncit:C29867, sio:Human	sio:SubjectRole	
??screening	Screening	chear:Screening		
??exam	Examination	ncit:C131902		
??birth	Birth	sio:Birthing		
??pregnancy	Pregnancy	chear:Pregnancy		
??interview	Interview	ncit:C16751		
??instrument	Instrumentation	ncit:C16742		
??household	Household	chear:Household		??participant
??HHRef	Household reference	sio:Human	chear:HeadOfHousehold	??household


IMPLICIT ENTRIES

CODEBOOK EXAMPLE

<u> </u>				\sim
٠	COLUMN	Code	Label	CLASS
	RIAGENDR	1	Male	sio:Male
	RIAGENDR	2	Female	sio:Female
\sim	RIAGENDR	3	Missing	ncit:C142610
	RIDRETH1	1	Mexican American	exo:0000151
	RIDRETH1	2	Other Hispanic	exo:0000145
	RIDRETH1	3	Non-Hispanic White	exo:0000158
	RIDRETH1	4	Non-Hispanic Black	exo:0000132
	RIDRETH1	5	Other Race - Including Multi-Racial	exo:0000153
	RIDRETH1		Missing	ncit:C142610
	DMDEDUC3	0	Never attended / kindergarten only	chear:NoFormalEducation
	DMDEDUC3	1	1st grade	chear:EducationGrade
	DMDEDUC3	2	2nd grade	chear:EducationGrade
	DMDEDUC3	3	3rd grade	chear:EducationGrade
	DMDEDUC3	4	4th grade	chear:EducationGrade
	DMDEDUC3	5	5th grade	chear:EducationGrade
	DMDEDUC3	6	6th grade	chear:EducationGrade
	DMDEDUC3	7	7th grade	chear:EducationGrade
	DMDEDUC3	8	8th grade	chear:EducationGrade


REPRESENTATION



REPRESENTATION

	Column	Attribute	ATTRIBUTEOF	ENTITY	Role	INRELATIONTO
	SUBJECT_ID	sio:Identifier	??subject			
	ADMITTIME	sio:TimeInstant	??admission			
	DISCHTIME	sio:TimeInstant	??discharge			
	DEATHTIME	sio:TimeInstant	??death			
	INSURANCE	chear:InsuranceType	??subject			
	RELIGION	chear:Religion	??subject			
\cap	MARITAL_STATUS	chear:MaritalStatus	??subject			
\bigcirc	ETHNICITY	sio:Ethnicity	??subject			
	DIAGNOSIS	ogms:0000073	??subject			
	??subject			sio:Human	sio:SubjectRole	
^	??admission			ncit:C25385		??subject
	??discharge			genepio:0001849		??subject
	??death			ncit:C28554		??subject

mimic-kb:ROW_ID-Se0ca76	3850ea1b0565d1f78215ba39b sio:Identifier ;	rdf:type	<pre>mimic-kb:ROW_ID ;</pre>
	Of mimic-kb:row-5e0ca763850ea1	b0565d1f78215ba3	19b ;
rdf:type	ca763850ea1b0565d1f78215ba39b sio:Identifier ;		
sio:isAttribute sio:hasValue	Of mimic-kb:subject-5e0ca76385 "22"^^xsd:integer .	0ea1b0565d1f7821	.5ba39b ;
rdf:type	63850ea1b0565d1f78215ba39b sio:Identifier ;	rdf:type	<pre>mimic-kb:HADM_ID ;</pre>
sio:isAttribute sio:inRelationT sio:hasValue	Of mimic-kb:admission-5e0ca763 o mimic-kb:hospital-5e0 "165315"^^xsd:integer .		
mimic-kb:ADMITTIME-5e0c rdf:type	a763850ea1b0565d1f78215ba39b sio:TimeInstant :	rdf:type	<pre>mimic-kb:ADMITTIME ;</pre>
sio:isAttribute sio:hasValue	Of mimic-kb:admission-Se0ca763 "2196-04-09 12:26:00"^^xsd:st		:215ba39b ;
mimic-kb:DISCHTIME-5e0c rdf:type	a763850ea1b0565d1f78215ba39b sio:TimeInstant :	rdf:type	<pre>mimic-kb:DISCHTIME ;</pre>
sio:isAttribute sio:hasValue	Of mimic-kb:discharge-5e0ca763 "2196-04-10 15:54:00"^^xsd:st		215ba39b ;
rdf:type	a763850ea1b0565d1f78215ba39b sio:TimeInstant ; Of mimic-kb:death-5e0ca763850e		mimic-kb:DEATHTIME ; ma39b .
mimic-kb:ADMISSION_TYPE rdf:type	-5e0ca763850ea1b0565d1f78215ba ncit:C25385 :	39b rdf:t	ype mimic-kb:ADM
sio:inRelationT		0ca763850ea1b056	5d1f78215ba39b ;
rdf:type	TION-5e0ca763850ea1b0565d1f782 sio:Location ; Of mimic-kb:admission-5e0ca763 "Emergency Room Admittance "^	850ea1b0565d1f78	
sio:hasValue	"EMERGENCY ROOM ADMIT"^^xsd:s	tring .	

https://bit.ly/2HJ3iHD

O5 CHALLENGES

We discuss some challenges faced by domain scientists when creating their of Semantic Data Dictionaries

EXPERIMENTAL SETUP

- Domain scientists were presented with initial training
 - Epidemiologists and biostatisticians
- Supporting materials were developed in collaboration with a domain expert
 - Were made available to provide guidance and examples
- A template for completing the Semantic Data Dictionary was provided
 - Included pre-populated fields for common demographic concepts
 - Such as age, race, and gender
- A help document was created that included instructions and representations of more complex concepts
 - Measurements of environmental samples
 - Measurements of biological samples
 - Measurements taken at specific time-points
- A practical workshop was held
 - A semantic scientist provided training in semantic representation to the domain scientists
- Domain scientists completed at least one Semantic Data Dictionary for an epidemiologic study $^{\circ}$

CHALLENGES

- Domain scientists had representation difficulties
 - Complex ideas (e.g. fasting blood glucose levels)
 - Implicit concepts
 - Uncommon representation in the public health domain
 - Not necessarily intuitive
 - Time associations
- Determining best ontology term for annotation was not always clear
 - What if a term was not found in a supporting ontology?
 - Best way to represent concept in a semantically appropriate way
 - What other ontologies should be used?
- Requirement for user to have some domain & ontology knowledge
- Currently only supports annotation of tabular data
- Annotation process is mostly manual
- Documentation and tutorials can be improved

O6 conclusions

Thanks for listening!

CLOSING COMMENTS

Semantic Data Dictionaries address many of the limitations of the prior work -thus, this work helps advance the state-of-the-art

The SDD approach follows Semantic Web standards and results in artifacts that are findable, accessible, interoperable, and reusable

RESOURCES

- whyis <u>https://github.com/tetherless-world/whyis</u>
- HADatAc <u>https://github.com/paulopinheiro1234/hadatac</u>
- sdd2rdf <u>https://github.com/tetherless-world/SemanticDataDictionary</u>
- Documentation <u>https://tetherless-world.github.io/sdd/</u>
- Annotated resource examples <u>https://github.com/tetherless-world/sdd/tree/master/sdd_resources</u>
- Journal Paper <u>https://bit.ly/3kG6iDi</u>

REFERENCES

- Apacible, J. T., Nolan, S. P., Kalmady, G. D., and Varadan, V. (2013). Extensible and localizable health-related dictionary. US Patent 8,417,537.
- Arenas, M., Bertails, A., Prudhommeaux, E., and Sequeda, J. (2012). A direct mapping of relational data to rdf. W3C recommendation, 27:1–11.
- Cerans, K. and Bumans, G. (2011). Rdb2owl: a rdb-to-rdf/owl mapping specification language.Information Systems, pages 139–152.
- del Carmen Legaz-Garc´ıa, M., Minarro-Gimenez, J. A., Menarguez-Tortosa, M., and Fern´andez-Breis, J. T. (2016). Generation of open biomedical datasets through ontology-driven transformation and integration processes. Journal of biomedical semantics, 7(1):32.
- Dimou, A., Vander Sande, M., Colpaert, P., De Vocht, L., Verborgh, R., Mannens, E., and Van de Walle, R. (2014). Extraction and semantic annotation of workshop proceedings in html using rml. In Semantic Web Evaluation Challenge, pages 114–119. Springer.
- Ham, K. (2013). Openrefine (version 2.5). <u>http://openrefine.org</u>. free, open-source tool for cleaning and transforming data. Journal of the Medical Library Association: JMLA, 101(3): 233.
- Haskell, R. E., Heil, J. A., and Cassidy, J. (2009). Dynamic dictionary and term repository system. US Patent 7,580,831.
- IBM (1993). IBM Dictionary of Computing.McGraw-Hill, Inc., New York, NY, USA, 10th edition.
- Klimek, J., Skoda, P., and Necasky, M. (2016). Linkedpipes etl: Evolved linked data preparation. In European Semantic Web Conference, pages 95–100. Springer.
- Knoblock, C. A. and Szekely, P. (2015). Exploiting semantics for big data integration. Al Magazine, 36(1).
- Kuchinke, W., Wiegelmann, S., Verplancke, P., and Ohmann, C. (2006). Extended cooperation in clinical studies through exchange of cdisc metadata between different study software solutions. Methods of information in medicine, 45(04):441–446.

REFERENCES

- Lau, L., Endo, J., Karren, S., Willis, M., Harada, S., Beeney, S., Larsen, B., Cassin, E., and Gerard, M. (2002). Mapping clinical data with a health data dictionary.US Patent App. 09/755,966.
- Lenzerini, M. (2002). Data integration: A theoretical perspective. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 233–246. ACM.
- McCusker, J. P., Chastain, K., Rashid, S., Norris, S., and McGuinness, D. L. (2018). Setlr: the semantic extract, transform, and load-r.PeerJ Preprints, 6:e26476v1.
- Michel, F., Djimenou, L., Zucker, C. F., and Montagnat, J. (2015). Translation of relational and non-relational databases into rdf with xr2rml.In11th International Conference on Web Information Systems and Technologies (WEBIST'15), pages 443–454.
- Pinkel, C., Schwarte, A., Trame, J., Nikolov, A., Bastinos, A. S., and Zeuch, T. (2015). Dataops: seamless end-to-end anything-to-rdf data integration. In European Semantic Web Conference, pages 123–127. Springer.
- Post, A. R., Krc, T., Rathod, H., Agravat, S., Mansour, M., Torian, W., and Saltz, J. H. (2013). Semantic etl into i2b2 with eureka!AMIA Summits on Translational Science Proceedings, 2013:203.
- Santipantakis, G. M., Kotis, K. I., Vouros, G. A., and Doulkeridis, C. (2018). Rdf-gen: Generating rdf from streaming and archival data. In Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics, page 28. ACM.
- Schultz, A., Matteini, A., Isele, R., Bizer, C., and Becker, C. (2011). Ldif-linked data integration framework.InProceedings of the Second International Conference on Consuming Linked Data-Volume 782, pages 125–130.CEUR-WS. Org.
- Slepicka, J., Yin, C., Szekely, P. A., and Knoblock, C. A. (2015). Kr2rml: An alternative interpretation of r2rml for heterogenous sources. In Cold.

REFERENCES

- Stadler, C., Unbehauen, J., Westphal, P., Sherif, M. A., and Lehmann, J. (2015). Simplified rdb2rdf mapping. In LDOW@ WWW, volume 1409.
- Thompson, F. C. (1999). Data dictionary and standards for fruit fly information database.
- Myia.Warzel, D. B., Andonyadis, C., McCurry, B., Chilukuri, R., Ishmukhamedov, S., and Covitz, P. (2003). Common data element (cde) management and deployment in clinical trials.InAMIA annual symposium proceedings, volume 2003, page 1048. American Medical Informatics Association.
- Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., et al. (2016). The fair guiding principles for scientific data management and stewardship. Scientific data, 3.
- Zozus, M. N., Bonner, J., and Rock, L. (2017). Towards data value-level metadata for clinical studies. In ITCH, pages 418–423.